United States Patent 9

Christensen et al.

US005751942A

Patent Number:
Date of Patent:

[11]

5,751,942

[45] May 12, 1998

[54]

[75]

[73]

[21]
[22]

[63]

[51]
[52]

[58]

[56]

TRACE EVENT DETECTION DURING
TRACE ENABLE TRANSITIONS

Reed K. Christensen; Robert W.
Martell, both of Hillsboro, Oreg.

Inventors:

Assignee: Intel Corporation, Santa Clara, Calif.

Appl. No.:
Filed:

647,387
May 9, 1996

Related U.S. Application Data

Continuation of Ser. No. 85,645, Jun. 30, 1993, abandoned.

Int. CLS GOGF 11/00; GOGF 9/45
US. CL . 395/183.14; 395/704; 395/183.1;
395/183.11; 395/183.15; 395/183.21

Field of Search 395/183.1. 183.11,
395/183.14, 183.15, 183.21; 364/267-267.91

References Cited
U.S. PATENT DOCUMENTS

171987 Moyer et al. ...cucrvvcreevrnrneneenss 395/375
371119

4,635,193

4,802,165 1/1989 Ream

5265254 11/1993 Blasciak et al. .ooervceerveenrennna: 3957700
5,313,616 5/1994 Cline etal. 395/500
5,359,608 10/1994 Belz et al. ..oovecrreerracnceccecnnnas 371/16.5

OTHER PUBLICATIONS

Robert L. Kruse, “Data Structures and Programming
Design”, 1987, pp. 22-26.

Assistant Examiner—P. Vales
5 ! aylor &

Zafman

[57] ABSTRACT

A method and apparatus for providing trace fault informa-
tion to a trace fault handler. The trace fault information is
evaluated prior to beginning execution of a micro code flow.
The evaluated trace fault information is stored in a buffer
and the micro code flow is executed. While the micro code
flow is executing, if a micro code instruction of the micro
code flow is executed that enables tracing, the trace fault
information stored in the buffer is written to a data storage
area. The data storage area is accessible to the trace fault
handler.

14 Claims, 5 Drawing Sheets

EVALUATE
TRACE DATA
AND STORE

IN BUFFER 500

EXECUTE NEXT

MICRO CODE

INSTRUCTION
53

0

[READ-MODIFY-
WRITE CHANGED

Yy

TRACE DATA
TOBUFFER 544

WRITE BUFFER
CONTENTS TO
CONTROL

REGISTER

556

Daily

5,751,942

Sheet 1 of 5

May 12, 1998

U.S. Patent

ot
LSOH

19)(3 0 SRCH)
dIHO-NO

00T YOSSHADOUJOYIIN LADYVL

HOVHL

Nomsioaa | 4400 [1

[a4n3g
0g Snd
NOLLONYLSNI
0al -« i
AHOVO1 [e—
05T
091 AAAANG
YALSIDIA JALSIDAY
TOYINOD TOYINOD
011
A H oy
q g Jdoo
< q00 AT TANVH
ov1 10V AOVEL
% 21501 >
» NOLLOALAA
07 SNg 301 AOVHL
v ¢|L et
OLL < s AHOVD
HA0D OYDIN | —

U.S. Patent May 12, 1998 Sheet 2 of 5 5,751,942

TRACE DECISION
ROUTINE A MICRO CODE
210 270
BEGIN
ROUTINE A MICRO I-1
ALl
[]
AL2
S ®
S
®
AL3
9&0
AL4
MICRO LK
[]
®
[]
BREAK TO
ICE HOST oE SRmaAK
280
NO - 244
TRACE|FAULT
EXD HANDLER|CODE 250
Al-J © TFLI

TFI-P

I oure 2

5,751,942

Sheet 3 of 5

May 12, 1998

U.S. Patent

N-I1d
NINLIY

1-1d
4 INLLOOY

NIDJId

0L€
g INILLNOY

48g

0S3[dd0D YY4'TANVH
IINVA AOVUL

%
&

d-14L

I"T4L

088

LSOH HJI
OLMvddd

e aunsgy

-1 O4DIN

T-I O¥YDIN

0Lg
HAOD OYOIN

NOISIOAd HOVIL

W-ID

0ge
HAOD OYDIN TIVO

Org

v
aNd

T+TIV

TIV
g TIVD

-1V
V ANILLAOH
NIDI4

012
V UNLLNOY

U.S. Patent

May 12, 1998

Sheet 4 of §

TRACE CONTROL REGISTERS 400

TRACE ENABLE

405

TRACE FAULT PENDING

410

INSTRUCTION MODE

415

BRANCH MODE

. 417

CALL MODE

420

RETURN MODE

422

PRE RETURN MODE

425

SUPERVISOR MODE

427

MARK/FMARK MODE

430

INSTRUCTION EVENT

432

BRANCH EVENT

435

CALL EVENT

437

RETURN EVENT

440

PRE RETURN EVENT

442

SUPERVISOR EVENT

445

MARK/FMARK EVENT

447

IP BRKPT 0

450

IP BRKPT1

455

TLB DA BRKPT EVENT

460

XLAT FLTIP

465

SEL MEM 1

470

CONST

475

SERIAL BRANCH

480

BRANCH READY

485

REGIPBP O

490

REGIPBP1

495

5,751,942

Figure 4

U.S. Patent May 12, 1998 Sheet 5 of 5 5,751,942

EVALUATE
TRACE DATA

»| AND STORE

- INBUFFER gqgq

EXECUTE NEXT

—»| MICRO CODE

INSTRUCTION
530

READ-MODIFY-
WRITE CHANGED
p{ TRACE DATA

TO BUFFER 546

WRITE BUFFER
CONTENTS TO
»| CONTROL
REGISTER 556

Figure 5

5,751,942

1

TRACE EVENT DETECTION DURING
TRACE ENABLE TRANSITIONS

This is a Continuation Application of application Ser. No.
08/085,645. filed Jun. 30. 1993, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of testing and
debugging computer systems, in particular, microprocessor
based computer systems. More specifically, the present
invention relates to testing and debugging using in-circuit
emulation or a software debugger.

2. Art Background

Microprocessor based computer systems are well known
and widely available. Generally. the heart of a microproces-
sor system is a single integrated circuit (IC) chip that
contains a processor. Typically, after going through a boot-
strap initialization process, the processor reads, decodes and
executes a stream of instructions that together form a
program or process. Usually, the process is stored in random
access memory (RAM) or read only memory (ROM) that is
external to the processor chip.

Reduced instruction set computing (RISC) processors are
becoming well known and widely available. A RISC pro-
cessor executes RISC instructions sequentially. RISC
instructions are macro instructions specified by the user in a
program or process. If a macro imstruction cannot be
executed as a single RISC instruction, the macro instruction
will cause a string or flow of micro code instructions
associated with the macro code instruction to execute. Then,
the next macro code instruction will execute. The micro
code instruction strings associated with a macro code
instruction are typically stored in ROM in a micro code
cache that resides on the processor chip.

Prototype hardware and system software for a micropro-
cessor system are often tested and debugged using a sec-
ondary auxiliary processor (host system) that monitors and
controls the prototype system under test (target system). The
host system is also known as an in-circuit emulator or
development system. Additionally, if the operating software
of the target system is not sufficiently functional to permit a
local debugger to execute on the target system, testing and
debugging are performed using a remote debugger on the
host system.

In order for the host system to be able to monitor and
control the target system, the host system must be able to
stop the target system, inspect or modify the processor and
system state, and then allow the target system to resume
normal operation. More specifically, the host system typi-
cally will be able to:

a) stop the processor of the target system,

b) inspect the registers and memory locations of the target

system to determine the state of the target system,

c¢) provide a command or instruction to the processor of

the target system for execution,

d) modify the registers and memory locations of the target

system,

¢) alter the program counters of the target system to

resume program execution on the target system at a
different location than the location the target system
relinquished control to the host system,

f) enable tracing and set trace break points to halt the

target system and return control to the host system upon
the occurrence of a particular condition, and

15

20

25

30

35

40

45

50

55

65

2

g) cause the target system to resume normal operation.

Traditionally, additional pins are provided to the pin-out
of the processor chip or a special version of the processor
chip of the target system, to allow the host system to be
connected to the target system and to perform the monitor
and control functions described above. The host system
stops the target system by asserting a break signal on one or
more of the additional pins of the processor chip. Upon
receiving the break signal, the processor chip generally
completes the instruction that it is currently executing and
then execute of the user code and awaits further instructions
from the host system.

Typically, if the host system enables tracing and sets a
trace break point, trace logic resident on-board the processor
chip will monitor the execution of the processor and, upon
the occurrence of a particular condition associated with the
trace break point, cause a trace fault event to occur. The trace
fault event is generally triggered by the execution of a macro
code instruction. For example, break points can be set to
occur: on the execution of a particular macro code
instruction, on the execution of a particular type of macro
code instruction or when a macro code instruction accesses
a particular memory location.

A function similar to in-circuit emulation is also per-
formed by a software debugger trace handler. In the case of
the software debugger, there is no need for a host system.
Instead, a software debugging program that is similar to any
other user program is typically stored on a random access
device such as a hard drive in the same way that a user
program would be stored. Typically. the software debugger
is executed and a user program to be debugged is specified.
The software debugger then controls the execution of the
user program to be executed. In this way, the software
debugger permits a user to stop the target system, inspect or
modify the processor and system states, and then allow the
target system to resume normal operation. Thus, a user can
employ a software debugger to perform directly from the
target system the same functions as those of in-circuit
emulation.

Occurrence of a trace event will cause the target system
to stop execution of the user code and cause a trace fault
handler to turn control of the target system over to the host
system or the software debugger. Generally, when tracing
has been enabled, on-board tracing logic will maintain trace
information that is stored in trace control registers on-board
the processor. The trace information is used by the trace
handler or the host system to determine the particular trace
event that occurred and to determine the next instruction to
be executed by the processor when the host returns control
to the processor.

One class of powerful macro code instructions that can be
developed by invoking micro code flows can switch the
execution environment of the program being executed. This
change of environment can invoke or disable tracing. If a
macro code instruction executes that invokes a micro code
instruction flow that enables tracing, the trace fault
information, traditionally evaluated upon execution of a
macro code instruction, will not have been evaluated.
Therefore, the trace fault handler or host system will not
have available to them the trace information that they need.

SUMMARY OF THE INVENTION

A method and apparatus for providing trace fault infor-
mation to a trace fault handler is described. The trace fault
information is evaluated prior to beginning execution of a
micro code flow. The evaluated trace fault information is
stored in a buffer and the micro code flow is executed.

5,751,942

3

While the micro code flow is executing, if a micro code
instruction of the micro code flow is executed that enables
tracing, the trace fault information stored in the buffer is
written to a data storage area. The data storage area is
accessible to the trace fault handler.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features, and advantages of the method and
apparatus of the present invention will be apparent from the
following detailed description of the invention in which:

FIG. 1 illustrates a microprocessor based computer sys-
tem that includes an external in-circuit emulator processor;

FIG. 2 illustrates a trace event reaction with a subsequent
return;

FIG. 3 illustrates a trace event detection during a trace
enable transition;

FIG. 4 illustrates trace control registers used by one
embodiment of a processor that can detect trace events
during execution of a micro code flow that causes a trace
enable transition; and

FIG. 5 illustrates a flow chart of a micro code flow that
causes a trace enable transition.

DETAILED DESCRIPTION OF THE
INVENTION

Amethod and apparatus for implementation of trace event
detection during trace enable transactions is disclosed. The
method and apparatus of the present invention has particular
application to testing and debugging of microprocessor
based computer systems.

In the following description, for purposes of explanation,
specific numbers, materials and configurations are set forth
in order to provide a thorough understanding of the present
invention. It will be apparent to one skilled in the art,
however, that the present invention may be practiced with-
out these specific details. In other instances, well known
systems are shown in diagrammatic or block diagram form
in order not to obscure the present invention unnecessarily.

Referring now to FIG. 1, a microprocessor based target
system is shown coupled to a host system so that in-circuit
emulation (ICE) can be performed. In FIG. 1, external
in-circuit emulator 10 (the host system) is coupled to pro-
cessor 100 (the target system) by in-circuit emulation bus
20. Host 10 can be a general purpose computer such as a
personal computer. Alternately, host 10 can be a dedicated
processor developed specifically for providing in-circuit
emulation.

The heart of processor 100 is core 110. Core 110 is where
code is executed. Core 110 has an instruction decoder, an
execution unit and a register file. In one embodiment,
processor 100 is a reduced instruction set computing (RISC)
processor. As such, processor 100 executes RISC instruc-
tions that are macro instructions, sequentially. If a macro
instruction cannot be executed as a single RISC instruction,
it will cause a string of micro code instructions to execute.
Then, the next macro code instruction will execute.

As can be seen in FIG. 1, macro code instructions enter
processor 100 through instruction bus 30 and are stored in
instruction cache 120 until they are required by core 110. If
one of the macro code instructions requires micro code, the
micro code is retrieved by core 110 from micro code ROM
cache 130.

On-chip ICE logic 170 resides on target microprocessor
100 and is coupled to host system 10 by ICE Bus 20.

10

15

20

25

30

35

45

50

55

65

4

On-chip ICE logic 170 receives in-circuit emulation com-
mands from host system 10, and provides information to
host system 10 in response to the ICE commands or in
response to the occurrence of trace events. ICE logic 170 can
also control core 110 in response to ICE commands that it
receives from host system 10. For example, upon receipt of
a break command from host system 10, ICE Logic 170 will
order core 110 to stop executing user code upon completion
of execution of any instraction that it is currently executing.

On-chip ICE Logic 170 is also coupled to trace detection
logic 140. Trace detection logic 140 is coupled to core 110
so that trace detection logic 140 can monitor the occurrence
of trace events as instructions are executed by core 110. For
example, the occurrence of a branch instruction may require
a branch event bit of FIG. 4 (described below) to bet set.
Trace detection logic 140 is also coupled to control register
160. Control register 160 contains trace information used by
trace detection logic 140 to keep track of the occurrence of
trace events and to determine the next macro code instruc-
tion to be executed by core 110 when execution of the user
code continues. Trace detection logic 140 is also coupled to
micro code cache 130. In this way, when trace detection
logic 140 detects a trace event, trace decision micro code
135 is retrieved from micro code cache 130 to core 110 so
that it may be executed. Control register 160 is also coupled
to on-chip ICE logic 170 so that, upon the occurrence of a
trace event during in-circuit emulation, on-chip ice logic 170
can provide trace fault information to host system 10 after
trace decision micro code 135 has executed and turned
control of target processor 100 over to host 10.

Alternately, trace detection logic 140 can be used by
software debugger trace fault handler code 40 to debug
software in much the same manner as would be performed
using in-circuit emulation by host system 10. When a break
set by trace fanlt handler code 40 is detected by trace
detection logic 140, the trace decision micro code 135 would
be invoked and would determine that, rather than in-circuit
emulation, software debugging was being performed.
Therefore, instead of turning control of target processor 100
over to host system 10, code instructions from trace fault
handler code 40 would be executed by core 110 until trace
fault handler code 40 ordered target processor 100 to con-
tinue execution of the software being debugged.

Just as host 10 can be used in a system that does not have
software debugger trace fault handler code 40, software
debugger trace fault handler 40 can be used in a system that
does not include host 10. It is also possible to use host
system 10 and software debugger trace fault handler 40 in
the same system. The latter case could be accomplished, for
example, by having trace decision micro code 135, upon
detection of a trace fault, test a value stored in control
register 160. The value in control register 160 could be set
by host 10 and by software debugger 40, and would be used
by trace decision micro code 135 to determine whether to
turn control of processor 100 over to host 10 or software
debugger 40.

Trace detection logic 140 is also coupled to control
register buffer 150. When tracing is not enabled, trace
detection logic 140 loads control register buffer 150 with
trace information that would be stored in control register 160
if tracing were enabled. Then, if a macro code instruction is
executed in core 110 that causes the execution of a micro
code flow that enables tracing, trace detection logic 140 will
sense the enabling of the tracing. Upon sensing the enabling
of the tracing, trace detection logic 140 will cause the trace
information stored in control register buffer 150 to be written
to control register 160. In this way, the trace information will

5,751,942

5

be available in control register 160 when it is required by
trace fault handler code 40 or by host system 10.

The contents of control register 160 are accessible by host
system 10 and by trace fault handler code 40, and hence
visible to the user performing in-circuit emulation or soft-
ware debugging. The contents of control register buffer 150,
however, are not visible to the user. In this way, control
register buffer 150 permits trace information to be available
when needed because tracing was enabled by a micro code
instruction flow, while, at the same time, hiding trace
information from the user when tracing is not enabled.
Therefore, the storing of emroneous information in control
register 160 is avoided because trace information is only
stored in control register 160 when tracing is enabled.

Referring now to FIG. 2, a trace event reaction with a
subsequent return is illustrated. In FIG. 2, Routine A 210 is
shown to be a series of macro code instructions that begins
with macro code instruction Al-1 and ends with macro code
instruction AI-J. The macro code instructions are executed
sequentially by the target system core until instruction AI-3
is executed whereupon a trace event occurs.

The trace event associated with user instruction AI-3
could have occurred for many reasons. For example, an
instruction pointer break point could have been set so that
when the instruction stored at the memory location address
of instruction AT-3 was executed an instruction pointer break
event would occur. Alternately, instruction AI-3 could be an
instruction that accesses a memory location that has a data
access break point set thereby causing a data access event to
occur whenever that memory location is accessed.

It is also possible that an instruction type break point has
been set. Thus, for example, if a break on branch has been
set, and instruction AI-3 is a branch instruction, a branch
break event will occur when instruction AI-3 executes.

Furthermore, it is possible that the break was caused by
some reason not specific to instruction AI-3, and instruction
AI-3 was simply the instruction that was being executed
when the break occurred. For example, the break could have
been caused by a break command sent from the host system
that was received as instruction AI-3 was being executed.

Moreover, it is possible that the break could have been
caused by a combination of reasons. For example, an
instruction pointer break could have been set for instruction
AI-3, and instruction AI-3 could also be an instruction that
accesses a memory location that has a data access break set.

Regardless of the cause of the trace break, instruction
AI-3 will complete execution and then the processor will
stop executing instructions of routine A 210. As illustrated
by arrow 220, control will then be transferred to the trace
decision micro code 270. Trace decision micro code 270 is
a series of micro code instructions (MICRO 1-1 through
MICRO I-K) that are used to determine the type of trace
event that occurred and provide control of the target system
to the host system or to the trace fault handler code 250. In
decision block 240 a test is made to determine whether an
ICE break has been enabled. If the ICE break has been
enabled, then decision path 242 will be taken to process
block 280 and a break to host 10 will occur. Then, when host
10 returns control of processing to processor 100, execution
of routine A 210 will resume with the execution of instruc-
tion AI-4 as shown by arrow 290. Instruction Al-4, is the
next instruction to execute in routine A after instruction AI-3
executed. The target system will then continue execution of
instructions in Routine A 210 until the routine ends at
instruction AT-J.

Referring again to decision block 240, if the ICE break
has not been enabled, then decision path 244 will be taken

20

25

30

35

45

50

55

65

6

to trace fault handler code 250 and software debugging
using trace fault handler code 250 executing in core 110 will
occur. Then, when trace fault handler code 250 returns
control of processing to processor 100, execution of routine
A 210 will also resume with the execution of instruction
AI-4 as shown by arrows 260 and 290.

Referring now to FIG. 3, trace event detection during a
trace enable transition is depicted. In FIG. 3, the instructions
of Routine A 210 are executed sequentially by the target
system until the target system executes instruction AT-L. In
this example, instruction AI-L is a macro instruction that is
a call to sub-Routine B 370. Normally, a call to a routine
causes the processor to suspend execution of the instructions
of the calling routine and execute an instruction sequence
that is the called routine. Upon completion of execution of
the called routine, a return is made to the calling routine and
the instruction of the calling routine that immediately fol-
lows the call instruction is executed.

In FIG. 3, as illustrated by arrow 310, the macro code call
instruction AT-L causes execution of call micro code 350 (a
micro code sequence of instructions CI-1 through CI-M).
The micro code sequence of call micro code 350 changes the
execution environment from that of the calling routine to
that of the called routine so that the called routine can be
executed. In so doing, it may be the case that, although
tracing was not enabled in the environment for the calling
routine (i.e., Routine A 210), tracing is to be enabled in the
environment of the called routine (i.c., Routine B 370).
Thus, if this is the case, execution of one of the micro code
instructions of call micro code 350 will cause tracing to be
enabled. Then, because tracing will have been enabled, trace
decision micro code 270 will be invoked as shown by arrow
320 and executed prior to execution of Routine B 370. Thus,
as represented by arrow 330 a test is made in decision block
340 to determine whether an ICE break has been enabled. If
the ICE break has been enabled, then decision path 342 will
be taken to process block 380 and a break to host 10 will
occur. Then, when host 10 returns control of processing to
processor 100, execution of routine B 370 will begin with
the execution of instruction BI-1 as shown by arrows 385
and 390. Routine B 370 will execute and then, upon comple-
tion of execution of Routine B 370, processing will return to
instruction AI-L+1 (as depicted by arrow 395).

Referring again to decision block 340, if the ICE break
has not been enabled, then decision path 344 will be taken
to trace fault handler code 250 and software debugging
using trace fault handler code 250 executing in core 110 will
occur. Then, when trace fault handler code 250 returns
control of processing to processor 100, execution of routine
B 370 will resume with the execution of instruction BI-1 as
shown by arrows 387 and 390.

Because tracing was not enabled when macro code
instruction AI-L initiated the call micro code 350, the trace
information required by trace decision micro code 270
would not have been evaluated and stored in the trace
control register. When macro code instruction AI-L was
executed, however, the trace information is evaluated and
stored in a buffer by the trace detection logic even though
tracing is not enabled. Then, when tracing is enabled due to
the change of environment during execution of call micro
code 350 from the environment of Routine A 210 to the
environment of Routine B 370, the trace detection logic will
cause the trace information stored in the buffer to be written
to the trace control register so that it will be available when
trace decision micro code 270 executes.

Referring now to FIG. 4, trace control registers of one
embodiment of a fault mechanism for a superscalar proces-

5,751,942

7

sor are depicted. The trace control registers depicted in FIG.
4 are presented to provide representative examples of trace
control registers. Because the processor is a superscalar
processor, it is able to group up to three macro code
instructions together and execute them simultaneously.
Some of the trace control registers of FIG. 4 are used by a
serialization algorithm executed by the trace decision micro
code 270 to serialize instructions of multiple instruction sets
when a trace event occurs while executing one or more of
the instructions of a set of instructions. Details of the
serialization algorithm appear in U.S. patent application Ser.
No. 08/085,508. entitled “Precise Fault Mechanism for
Superscalar Processor Architectures”, Reed K. Christensen
and André Eberhard Wolper, filed Jun. 30, 1993.

In FIG. 4. all of the registers are single bit registers with
the exception of registers XLAT FLT IP 465, REG IPBP 0
490, and REG IPBP 1 495. Register XLAT FLT IP 465 is
used by the trace decision micro code to calculate the
instruction pointer locations for each instruction in a faulting
instruction group. Register IPBP 0 490 is used to store an
instruction pointer memory address upon which an instruc-
tion pointer break has been set. If a second instruction
pointer break is set, then the instruction pointer memory
address for the second instruction pointer break point is
stored in register IPBP 1 495.

Trace enable bit 405 is set by the host system or trace fault
handler code. When trace enable bit 405 is set, the trace fault
mechanism will operate. If there is no need for in-circuit
emulation or software debugging, the trace enable bit 405
will not be set and the trace fault mechanism will be
disabled.

Trace fault pending bit 410 is set by the trace logic when
atrace fault is encountered. Setting of the trace fault pending
bit 410 invokes trace decision micro code 270 to handle the
pending trace fault.

Instruction, branch, call, return, pre-return, supervisor and
mark/fmark mode bits 415, 417, 420, 422, 425, 427 and 430,
respectively, are set by the host processor or software
debugger and control the mode of the trace fault mechanism.
If instruction mode bit 415 is set, the superscalar capability
of the target processor is disabled and only one instruction
is executed at a time. After each instruction is executed,
instruction event bit 432 will be set thereby notifying trace
fault handler 40 that the instruction has executed. If tracing
is enabled and the branch mode bit 417 is set, branch event
bit 435 will be set and a trace fault break will occur
whenever a branch instruction is executed. Similarly, when-
ever tracing is enabled and call mode bit 420 is set, call event
bit 437 will be set and a trace fault break will occur
whenever a call instruction is encountered. If tracing is
enabled and return mode bit 422 is set, return event bit 440
will be set and a trace fault break will occur whenever a
return from a called routine has occurred. If tracing is
enabled and pre-return mode bit 425 is set, pre-return event
bit 442 will be set and a trace fault break will occur prior to
a return from a called routine. If tracing is emabled and
supervisor mode bit 427 is set, supervisor event bit 445 will
be set and a trace fault break will occur whenever the
process enters the supervisor mode during an execution
environment change. A mark/fmark event occurs when a
user instruction has an explicit invocation of the trace fault
handler. If tracing is enabled and mark/fmark mode bit 430
is set, mark/fmark event bit 447 will be set and a trace fault
break will occur whenever a mark/fmark has occurred. If
tracing is enabled and an instruction pointer memory address
has been stored in register IPBP 0 490, event bit IP BKRKPT
0 450 will be set and a trace fault break will occur whenever

10

15

20

25

30

35

45

50

55

65

8

the instruction stored at the instruction pointer memory
address stored in register IPBP ¢ 490 has been executed.
Similarly, if tracing is enabled and an instruction pointer
memory address has been stored in register IPBP 1 495,
event bit IP BKRKPT 1 455 will be set and a trace fault
break will occur whenever the instruction stored at the
instruction pointer memory address stored in register IPBP
1 495 has been executed. Finally, the TLB DA break point
event flag 460 is set when the translation look-aside buffer
discovers that a data break point was set for a data location
that is being accessed.

Register bits SEL MEM1 470, const 475, serial branch
480 and branch ready 485 contain the information of the
issue template of the superscalar processor. In this
architecture, up to three instructions can be executed in
parallel. The instructions are separated into three types:
REG, MEM, and BOP. REG instructions are register-to-
register instructions such as adds, subtracts. or moves. MEM
instructions are load and store types of instructions. BOPs
are branch operations. Table 1 sets forth the possible issue
templates and corresponding values of the SEL MEMI,
const, serial branch and branch ready bits for the embodi-
ment being described. It is possible for a MEM type instruc-
tion to be two words long. In Table 1, MEM designates the
first word of the MEM type instruction and DIS signifies the
second word.

It can be seen from Table 1 that, in the superscalar
processor being described, no instruction duster can contain
more than one instruction of a given type. Furthermore, if an
instruction contains a REG type instruction, it must be the
first instruction in the cluster. Also, if an instruction in
cluster contains a BOP type instruction, it must be the last
instruction in the cluster.

TABLE 1
SEL SERIAL BRANCH _INSTRUCTIONS ISSUED
MEM1 CONST BRANCH READY WO w1 w2
—_ —_— 1 1 BOP
0 0 0 0 REG
0 o] 0 1] MEM
0 1 0 0 MEM DIS
9] 0 0 1 REG BOP
1 0 0 0 REG MEM
1 0 0 0 REG MEM DIS
o} 0 ¢} 1 MEM BOP
o] 1 0 1 MEM DIS BOP
1 0 o] 1 REG MEM BOP

From Table 1 it can also be seen that the serial branch 480
bit is only set when a branch operation, and no other
operation, is issued in an instruction group. If an instruction
group includes a branch operation, the branch ready 485 bit
is set. If an instruction group includes both a register and a
memory instruction, then the SEL MEMI1 bit 470 is set.
Finally, the const bit 475 is set when the issue template
includes a double word memory instruction, but does not
also include a register instruction.

Referring now to FIG. S, a flow chart of amicro code flow
that can cause a trace enable transition is illustrated. The
micro code flow of FIG. 5 will start at start bubble $10, in
one embodiment, when a macro code instruction of the
target processor causes the micro code flow to be invoked.
In decision block 520, a test is performed to determine
whether tracing is enabled. If tracing has not been enabled,
then decision path 522 is taken to process block 526 where
the trace data is evaluated and stored in the buffer. The test

5,751,942

9

of decision block 520 and process of process block 526 can
be performed by micro code instructions. Alternately, the
function can be implemented in hardware and invoked
whenever a macro code instruction causes a micro code
instruction flow to occur.

In process block 530, a single micro code instruction is
executed by the target system. If the micro code instruction
flow has just begun, the micro code instruction executed in
process block 530 will be the first micro code instruction in
the micro code instruction flow. If, however. one or more
micro code instructions of the micro code instruction flow
have already been executed, then the next micro code
instruction to be executed of the micro code instruction flow
will be executed in process block 530.

It is possible that execution of a micro code instruction in
process block 530 will cause one or more values of the trace
data to change. Therefore, upon execution of a micro code
instruction in process block 530, a test is performed in
decision block 540 to determine whether the micro code
instruction that executed has caused a need for the trace data
stored in the trace data buffer to be updated. If the trace data
must be updated, then decision path 542 is taken from
decision 540 to process block 546 where the trace data in the
buffer is updated.

In one embodiment, the trace data buffer is updated to
reflect the change in the trace data by reading the trace data
buffer contents, modifying the values read to reflect the
change in trace data and then writing the updated data back
to the buffer. In this embodiment. the read-modify-write
procedure is used to ensure that only the data changed by
execution of the last micro code instruction will be modified.

Alternately, if there is no danger that information in the
buffer will be lost, in process block 546, all of the trace data
information can be re-evaluated and then written to the
buffer.

Referring now to decision block 550, a test is made to
determine whether execution of the micro code instruction
in process block 530 caused tracing, that. was previously not
enabled, to become enabled. If this is the case, then decision
path 552 is taken to process block 556 where the contents of
the buffer are written to the control register.

A test is then made in decision block 560 to determine
whether there are more instructions in the micro code flow.
If there are more instructions in the micro code flow, then
decision path 562 is taken to process biock 530 where the
next micro code instruction of the micro code flow is
executed. If, on the other hand there are no more instructions
in the micro code flow, then decision path 564 is taken to
terminal bubble 570 where the micro code instruction flow
terminates.

Although FIG. 5 has been shown to perform the tests of
decision block 540, 550 and 560 after execution of each
micro code instruction, this was done for didactic purposes.
Typically, micro code flows are written to accomplish a
particular function. When the micro code instruction flow is
written, it is possible to determine whether a particular micro
code instruction of the micro code flow is the last micro code
instruction of the micro code flow, or will have the potential
to cause trace data to change or tracing to be enabled. If a
particular micro code instruction does none of these things,
there will be no need to perform the tests of decision block
540, 550 and 560 after the instruction is executed and
processing can proceed immediately to the next micro code
instruction of the micro code flow.

Alternately, the tests of decision block 540 and 550, and
the processes of process block 546 and 556 can be imple-
mented in hardware rather than by micro code instructions.

20

25

30

35

45

50

55

65

10

Referring again to process block 556, in the event that the
buffer contents are written to the control register, it may be
necessary to ensure that additional micro code instructions
occur before the micro code flow ends. This is to ensure that
sufficient time will elapse to permit the buffer contents to be
stored in the control register before they are needed at the
termination of the micro code flow.

Although the method and apparatus of the present inven-
tion has been described in terms of its presently preferred
and alternate embodiments, those skilled in the art will
recognize that the present invention may be practiced with
modification and alternation within the spirit and scope of
the appended claims. The specifications and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

What is claimed is:

1. A method for testing one of software and an electronic
device, the method comprising the steps of:

monitoring for an occurrence of a trace event during
execution of macro code instructions prior to execution
of a plurality of micro code instructions;

determining whether or not tracing has been enabled;

storing the trace information in a buffer inaccessible to a
trace fault decision handler if tracing has been disabled
and the trace event has occurred;

executing the plurality of micro code instructions; and

while the plurality of micro code instructions are
executing, if one of the plurality of micro code instruc-
tions enabling tracing is executed, writing the trace
information stored in the buffer to a data storage area,
the data storage area being accessible to the trace fault
decision handler.

2. The method as set forth in claim 1, prior to the
monitoring step, the method further comprising the step of:

setting at least one mode bit of a control register in

accordance with a type of instruction associated with
the trace event. ’

3. The method as set forth in claim 1 further comprising
the step of:

while the plurality of micro code instructions are

executing, if tracing is not enabled and a micro code
instruction of the plurality of micro code instructions
that changes the trace information is executed, updating
the trace information stored in the buffer.

4. The method as set forth in claim 3 wherein the trace
information that changed is updated in the buffer through the
use of a read-modify-write operation so that trace informa-
tion that did not change is not affected.

5. An apparatus for providing trace information to a trace
fault decision handler for testing ome of software and
hardware, the apparatus comprising:

detection means for checking for an occurrence of a trace

event during execution of macro code instructions prior
to beginning execution of a plurality of micro code
instructions;

buffer means for temporarily storing the trace information

for use if tracing is initially disabled, said buffer means
being coupled to said detection means;

execution means for executing said plurality of micro

code instructions;

data storage means for storing the trace information for

use by the trace fault decision handler when tracing is
enabled; and

trace enable sensing means for writing the trace informa-

tion stored in the buffer means to the data storage area

5.751,942

11

if a first micro code instruction of the plurality of micro
code instructions, which enables tracing after said
detection means previously detected that tracing was
disabled. is executed, said trace enable sensing means
being coupled to said execution means, said buffer
means and said data storage means.
6. The apparatus as set forth in claim 5, wherein the trace
event is associated with one of a branch, a call and a return.
7. The apparatus as set forth in claim 5 further comprising:

updating means for updating the trace information stored
in the buffer means if (i) tracing is not enabled and a
second micro code instruction of the plurality of micro
code instructions that changes the trace information is
executed, said updating means being coupled to the
detection means and the buffer means.

8. The apparatus as set forth in claim 7 wherein the trace
information that changed is updated in the buffer means
through the use of a read-modify-write operation so that
trace information that did not change is not affected.

9. An apparatus for providing trace information to a trace
fault decision handler in order to test software or an elec-
tronic device, the apparatus comprising:

a trace detection logic configured to monitor for an
occurrence of a trace event during execution of macro
code instructions prior to beginning execution of a
plurality of micro code instructions;

a buffer coupled to the trace detection logic, said buffer is
inaccessible to the trace fault decision handler and
temporarily contains the trace information when trac-
ing is disabled;

a core circuit configured to execute the plurality of micro
code instructions;

a data storage element to contain the trace information for
use by the trace fault decision handler when tracing is
enabled; and

a trace enable sensor coupled to the core circuit, the buffer
and the data storage element, to write the trace infor-
mation stored in the buffer to the data storage element,
if a micro code instruction of the plurality of micro
code instructions that enables tracing when tracing is
disabled is executed.

10. A system for performing debugging operations, the

system comprising:

an external debugger; and

a processor including

execution means for executing a micro code flow,

10

15

20

25

30

35

45

12

detection means for checking for an occurrence of a trace
event during execution of macro code instructions by
the processor prior to beginning execution of the micro
code flow to determine whether or not tracing has been
enabled, said detection means being coupled to said
execution means,

buffer means for containing the trace information if
tracing is not enabled, said buffer means being coupled
to said executing means and is inaccessible to said
external debugger,

trace fault decision means, for providing control of the
execution means by the external debugger upon
completion of execution of the micro code flow if
tracing was enabled during execution of the micro code
flow, said trace fault decision means being coupled to
said execution means and said external debugger,

data storage means for containing the trace information
for use by the trace fault decision means when tracing
is enabled, said data storage means being coupled to
said trace fault decision means., and

trace enable sensing means for writing the trace informa-
tion stored in the buffer means to the data storage
means if a micro code instruction of the micro code
flow that enables tracing when tracing is not enabled is
executed, said tracing enable sensing means being
coupled to said execution means, said buffer means and
said data storage means.

11. The system as set forth in claim 10, wherein said

processor further comprises:

updating means for updating the trace information stored
in the buffer means if tracing is not enabled and a micro
code instruction of the micro code flow that changes the
trace information is executed, said updating means is
coupled to the execution means and the buffer means.

12. The system as set forth in claim 11 wherein the trace
information that changed is updated in the buffer means
through the use of a read-modify-write operation so that
trace information that did not change is not affected.

13. The system as set forth in claim 10 wherein the
external debugger is a host system for performing in-circuit
emulation.

14. The system as set forth in claim 10 wherein the
external debugger is a trace fault handler code for perform-
ing software debugging.

* k¥ k¥

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :5,751,942 Page 1 of 1
DATED : May 12, 1998
INVENTOR(S) : Christensen et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 2
Line 11, delete “execute” and insert -- executes --.

Column 8
Line 28, delete “duster” and insert -- cluster --.

Signed and Sealed this

Eighth Day of April, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office

